Deep learning based recommender systems (DLRSs) often have embedding layers, which are utilized to lessen the dimensionality of categorical variables (e.g. user/item identifiers) and meaningfully transform them in the low-dimensional space. The majority of existing DLRSs empirically pre-define a fixed and unified dimension for all user/item embeddings. It is evident from recent researches that different embedding sizes are highly desired for different users/items according to their popularity. However, manually selecting embedding sizes in recommender systems can be very challenging due to the large number of users/items and the dynamic nature of their popularity. Thus, in this paper, we propose an AutoML based end-to-end framework (AutoEmb), which can enable various embedding dimensions according to the popularity in an automated and dynamic manner. To be specific, we first enhance a typical DLRS to allow various embedding dimensions; then we propose an end-to-end differentiable framework that can automatically select different embedding dimensions according to user/item popularity; finally we propose an AutoML based optimization algorithm in a streaming recommendation setting. The experimental results based on widely used benchmark datasets demonstrate the effectiveness of the AutoEmb framework.
翻译:深学习推荐系统(DLRSs)往往有嵌入层,用于减少绝对变量(例如用户/项目识别器)的维度,并在低维空间有意义地转换这些变量。大多数现有的DLRSs都通过经验预设了所有用户/项目嵌入的固定和统一维度。从最近的研究中可以明显看出,不同嵌入大小对于不同用户/项目的受欢迎度都是非常需要的。然而,由于用户/项目数量众多,而且其受欢迎性具有动态性质,人工选择建议系统中的嵌入大小可能非常具有挑战性。因此,在本文件中,我们提出了一个基于自动MLLO的端对端框架(AutoEmb),该框架能够根据自动和动态方式的受欢迎程度,使各种嵌入维度得以实现。具体地说,我们首先加强典型的DLRS,以便允许不同的嵌入维度;然后我们提出一个端到端的不同框架,可以根据用户/项目受欢迎度自动选择不同的嵌入维度;最后,我们提议一个基于自动MLULA在使用的数据基准框架中以展示结果。