We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in the number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Br\'azdil, Jan\v{c}ar, and Ku\v{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.
翻译:我们将高平板分离技术(Chatterjee和Velner,2013年)从多维平均抵消到能源游戏,并实现一种算法,以解决其运行时间仅在维度上指数化,而不是在游戏图的顶点数上指数化的后者。这回答了一个开放的问题,即以任意初始信用的能源游戏能否在固定维度3或更大的伪极地时代解决(Chaloupka,2013年)。它还提高了以非元素初始信用(Br\'azdil、Jan\v{c}ar和Ku\v{c}era,2010年)到2EXPTIME的解决多维能源游戏的复杂性,从而确立了其2EXPTIME的完整性。