We introduce a new dataset called SyntheticFur built specifically for machine learning training. The dataset consists of ray traced synthetic fur renders with corresponding rasterized input buffers and simulation data files. We procedurally generated approximately 140,000 images and 15 simulations with Houdini. The images consist of fur groomed with different skin primitives and move with various motions in a predefined set of lighting environments. We also demonstrated how the dataset could be used with neural rendering to significantly improve fur graphics using inexpensive input buffers by training a conditional generative adversarial network with perceptual loss. We hope the availability of such high fidelity fur renders will encourage new advances with neural rendering for a variety of applications.
翻译:我们引入了一个新的数据集,称为合成纤维,专门为机器学习培训而建造。该数据集由射线追踪合成毛毛以及相应的光化输入缓冲和模拟数据文件组成。我们通过程序生成了大约140,000张图像和15个模拟Houdini。这些图像由不同皮肤原始体制成的毛皮组成,并在一套预先定义的照明环境中以各种动作移动。我们还演示了如何利用神经转换来利用廉价输入缓冲来大大改进毛皮图,培训一个有条件的遗传对抗网络,造成感官损失。我们希望这种高度忠诚毛皮的可用性将鼓励在各种应用中以神经转换方式取得新的进步。