Learning deep generative models for 3D shape synthesis is largely limited by the difficulty of generating plausible shapes with correct topology and reasonable geometry. Indeed, learning the distribution of plausible 3D shapes seems a daunting task for most existing, structure-oblivious shape representation, given the significant topological variations of 3D objects even within the same shape category. Based on the consensus from 3D shape analysis that shape structure is defined as part composition and mutual relations between parts, we propose to model 3D shape variations with a deep generative network being both Part-Aware and Relation-Aware, named PARANet. The network is composed of an array of per-part VAE-GANs, generating semantic parts composing a complete shape, followed by a part assembly module that estimates a transformation for each part to correlate and assemble them into a plausible structure. Through splitting the generation of part composition and part relations into separate networks, the difficulty of modeling structural variations of 3D shapes is greatly reduced. We demonstrate through extensive experiments that PARANet generates 3D shapes with plausible, diverse and detailed structure, and show two prototype applications: semantic shape segmentation and shape set evolution.


翻译:3D 形状合成的深层基因化模型主要由于难以生成具有正确地形学和合理几何特征的貌似正象形状而基本受到限制。事实上,学习可信的3D形状的分布对于大多数现有的、结构上明显可见的形状代表体来说似乎是一项艰巨的任务,因为即使在同一形状类别中,3D 物体也存在着巨大的地形变异。基于3D 形状分析所达成的共识,即形状结构的形成被定义为组成部分的构成和各个部分之间的关系,我们建议模型3D 形状变异,一个深层次的基因变异网络,即称为PARANet的Part-Aware和Relation-Aware。这个网络由每部分VAE-GANs组成的一组阵列组成,产生完全形状的语义化部分,然后形成一个部分组合单元,估计每个部分的变异性,将其组合成一个合理的结构结构。通过将部件的构成和部分关系的形成分开的网络,将3D形状变形的模型化难度大为减少。我们通过广泛的实验证明,PARNet产生3D 形状的形状是合理、多样化和详细的结构。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员