How can we accurately recommend actions for users to control their devices at home? Action recommendation for smart home has attracted increasing attention due to its potential impact on the markets of virtual assistants and Internet of Things (IoT). However, designing an effective action recommender system for smart home is challenging because it requires handling context correlations, considering both queried contexts and previous histories of users, and dealing with capricious intentions in history. In this work, we propose SmartSense, an accurate action recommendation method for smart home. For individual action, SmartSense summarizes its device control and its temporal contexts in a self-attentive manner, to reflect the importance of the correlation between them. SmartSense then summarizes sequences of users considering queried contexts in a query-attentive manner to extract the query-related patterns from the sequential actions. SmartSense also transfers the commonsense knowledge from routine data to better handle intentions in action sequences. As a result, SmartSense addresses all three main challenges of action recommendation for smart home, and achieves the state-of-the-art performance giving up to 9.8% higher mAP@1 than the best competitor.


翻译:我们如何准确建议用户在家中控制其设备?智能家庭的行动建议因其对虚拟助手和物联网市场的潜在影响而引起越来越多的关注。然而,设计智能家庭的有效行动建议系统具有挑战性,因为它需要处理背景相关关系,既考虑到用户的被询问背景和以往历史,又考虑到历史中的反复无常的意图。在这项工作中,我们提出了智能家庭的一个准确行动建议方法SmartSense。关于个体行动,SmartSense以自我加速的方式总结其设备控制和时间背景,以反映它们之间相互关系的重要性。SmartSense随后总结了以查询加速的方式考虑询问背景的用户序列,以便从连续行动中提取与查询有关的模式。SmartSense还把普通知识从常规数据转移到更好地处理行动序列中的意图。因此,SmartSense处理智能家庭行动建议的所有三大挑战,并实现比最佳兼容器高9.8% mAP@1的状态。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员