The dissolution of solids has created spectacular geomorphologies ranging from centimeter-scale cave scallops to the kilometer-scale "stone forests" of China and Madagascar. Mathematically, dissolution processes are modeled by a Stefan problem, which describes how the motion of a phase-separating interface depends on local concentration gradients, coupled to a fluid flow. Simulating these problems is challenging, requiring the evolution of a free interface whose motion depends on the normal derivatives of an external field in an ever-changing domain. Moreover, density differences created in the fluid domain induce self-generated convecting flows that further complicate the numerical study of dissolution processes. In this contribution, we present a numerical method for the simulation of the Stefan problem coupled to a fluid flow. The scheme uses the Immersed Boundary Smooth Extension method to solve the bulk advection-diffusion and fluid equations in the complex, evolving geometry, coupled to a {\theta}-L scheme that provides stable evolution of the boundary. We demonstrate third-order temporal and pointwise spatial convergence of the scheme for the classical Stefan problem, and second-order temporal and pointwise spatial convergence when coupled to flow. Examples of dissolution of solids that result in high-Rayleigh number convection are numerically studied, and qualitatively reproduce the complex morphologies observed in recent experiments.
翻译:固态的溶解产生了惊人的地貌形态,从厘米尺度的洞穴扇贝到中国和马达加斯加的千米尺度的“石质森林”不等。从数学角度看,溶解过程是由斯特凡问题模拟的,它描述了相分离界面的动作如何取决于局部的浓度梯度,加上流体流。模拟这些问题具有挑战性,它需要自由界面的演变,而自由界面的动作取决于一个不断变化的域中外部场域的正常衍生物。此外,在流体域中产生的密度差异导致自生成的螺旋流,使溶解过程的数值研究进一步复杂化。在这个贡献中,我们提出了一个模拟Stefan问题和流体流体流的数值方法。这个方案使用混合的边界平滑扩展法来解决复杂、不断演变的地理测量中大量吸附和流方程式,以及提供稳定的边界演变的 。我们展示了古典史蒂芬问题的方案在时间和点上产生的自生成的曲线流,以及最近顺序的高度空间和高度空间级的摩化模型,当观测到精确的回流中,则是可观测到的高度空间和高度空间级的回化结果。