Feature-based transfer is one of the most effective methodologies for transfer learning. Existing studies usually assume that the learned new feature representation is truly \emph{domain-invariant}, and thus directly train a transfer model $\mathcal{M}$ on source domain. In this paper, we consider a more realistic scenario where the new feature representation is suboptimal and small divergence still exists across domains. We propose a new learning strategy with a transfer model called Randomized Transferable Machine (RTM). More specifically, we work on source data with the new feature representation learned from existing feature-based transfer methods. The key idea is to enlarge source training data populations by randomly corrupting source data using some noises, and then train a transfer model $\widetilde{\mathcal{M}}$ that performs well on all the corrupted source data populations. In principle, the more corruptions are made, the higher the probability of the target data can be covered by the constructed source populations, and thus better transfer performance can be achieved by $\widetilde{\mathcal{M}}$. An ideal case is with infinite corruptions, which however is infeasible in reality. We develop a marginalized solution with linear regression model and dropout noise. With a marginalization trick, we can train an RTM that is equivalently to training using infinite source noisy populations without truly conducting any corruption. More importantly, such an RTM has a closed-form solution, which enables very fast and efficient training. Extensive experiments on various real-world transfer tasks show that RTM is a promising transfer model.
翻译:基于地貌的传输是最有效的转移学习方法之一。 现有的研究通常假定, 学到的新特征代表方式是真正的 emph{ domain- invariant}, 从而直接在源域内训练一个 $\ mathcal{M} $ 传输模式 。 在本文中, 我们考虑一种更现实的假设方案, 新特征代表方式不尽理想, 不同领域之间仍然存在着小的差别 。 我们提出了一个新的学习战略, 名为随机可传输的可传输机(RTM ) 。 更具体地说, 我们用从现有基于地貌的传输方法所学的新特征代表方式来研究源数据。 关键的想法是, 通过使用一些噪音随机地, 来增加源数据, 来增加源的传输数据数量, 从而扩大源培训数量。 一个理想的例子是, 无限的转移模式是, 真正的转移过程是一个稳定的, 并且我们是一个稳定的, 将一个真实的, 逐渐的, 学习到一个稳定的,, 一种我们可以证明一个稳定的, 学习一个稳定的, 学习一个稳定的, 。 一种是, 一种真正的, 一种真正的的, 逐渐的, 一种是, 逐渐的, 一种, 一种是, 一种稳定的, 一种, 一种, 一种是, 一种稳定的, 一种, 一种, 一种是, 一种是, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种, 一种