Currently the amount of data produced worldwide is increasing beyond measure, thus a high volume of unsupervised data must be processed continuously. One of the main unsupervised data analysis is clustering. In streaming data scenarios, the data is composed by an increasing sequence of batches of samples where the concept drift phenomenon may happen. In this paper, we formally define the Streaming $K$-means(S$K$M) problem, which implies a restart of the error function when a concept drift occurs. We propose a surrogate error function that does not rely on concept drift detection. We proof that the surrogate is a good approximation of the S$K$M error. Hence, we suggest an algorithm which minimizes this alternative error each time a new batch arrives. We present some initialization techniques for streaming data scenarios as well. Besides providing theoretical results, experiments demonstrate an improvement of the converged error for the non-trivial initialization methods.
翻译:目前,全世界产生的数据数量正在增加,超出了计量范围,因此必须不断处理大量不受监督的数据。主要的未经监督的数据分析之一是集群。在数据流假设中,数据由越来越多的一系列样本组成,可能发生概念漂移现象。在本文件中,我们正式界定了流出美元(S$K$M)的方法问题,这意味着在概念漂移发生时将重新启用错误函数。我们提议了一个不依赖概念漂移探测的代用错误功能。我们证明,代用错误是S$K$M错误的良好近似值。因此,我们建议采用一种算法,在新批量到达时将这一替代错误最小化。我们为流出数据假设也提出了一些初始化技术。除了提供理论结果外,实验还表明非三重初始化方法的合并错误的改进。