Balanced and swap-robust minimal trades, introduced in [1], are important for studying the balance and stability of server access request protocols under data popularity changes. Constructions of such trades have so far relied on paired sets obtained through iterative combining of smaller sets that have provable stability guarantees, coupled with exhaustive computer search. Currently, there exists a nonnegligible gap between the resulting total dynamic balance discrepancy and the known theoretical lower bound. We present both new upper and lower bounds on the total service requests discrepancy under limited popularity changes. Our constructive near-optimal approach uses a new class of paired graphs whose vertices are two balanced sets with edges (arcs) that capture the balance and potential balance changes induced by limited-magnitude popularity changes (swaps).
翻译:平衡且交换鲁棒的最小交易对是研究数据流行度变化下服务器访问请求协议平衡和稳定性的重要工具。目前构建此类交易对的方法仍然依赖于通过迭代合并具有可证明稳定性保证的较小集合获得的配对集合,加上全面的计算机搜索。由此得到的总动态平衡差距与已知理论下限之间存在显著差距。我们提出了在流行度变化受限的情况下总服务请求差距的新上限和下限。我们的具有构造性的近乎最优方法使用一类配对图,其中顶点是两个平衡集,边(弧)捕捉受限流行度变化(交换)所产生的平衡和潜在平衡变化。