We propose a new representation of $k$-partite, $k$-uniform hypergraphs, that is, a hypergraph with a partition of vertices into $k$ parts such that each hyperedge contains exactly one vertex of each type; we call them $k$-hypergraphs for short. Given positive integers $\ell, d$, and $k$ with $\ell\leq d-1$ and $k={d\choose\ell}$, any finite set $P$ of points in $\mathbb{R}^d$ represents a $k$-hypergraph $G_P$ as follows. Each point in $P$ is covered by $k$ many axis-aligned affine $\ell$-dimensional subspaces of $\mathbb{R}^d$, which we call $\ell$-subspaces for brevity and which form the vertex set of $G_P$. We interpret each point in $P$ as a hyperedge of $G_P$ that contains each of the covering $\ell$-subspaces as a vertex. The class of \emph{$(d,\ell)$-hypergraphs} is the class of $k$-hypergraphs that can be represented in this way. The resulting classes of hypergraphs are fairly rich: Every $k$-hypergraph is a $(k,k-1)$-hypergraph. On the other hand, $(d,\ell)$-hypergraphs form a proper subclass of the class of all $k$-hypergraphs for $\ell<d-1$. In this paper we give a natural structural characterization of $(d,\ell)$-hypergraphs based on vertex cuts. This characterization leads to a poly\-nomial-time recognition algorithm that decides for a given $k$-hypergraph whether or not it is a $(d,\ell)$-hypergraph and that computes a representation if existing. We assume that the dimension $d$ is constant and that the partitioning of the vertex set is prescribed.
翻译:暂无翻译