We introduce the countdown $\mu$-calculus, an extension of the modal $\mu$-calculus with ordinal approximations of fixpoint operators. In addition to properties definable in the classical calculus, it can express (un)boundedness properties such as the existence of arbitrarily long sequences of specific actions. The standard correspondence with parity games and automata extends to suitably defined countdown games and automata. However, unlike in the classical setting, the scalar fragment is provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple syntactic condition. We establish some facts, in particular decidability of the model checking problem and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.
翻译:我们引入倒计时 $\ mu$- calculus, 这是模型 $\ mu$- calculs 与固定点操作员的圆形近似值的延伸。 除了古典微积分中可定义的属性外, 它还可以表达( un) 约束性属性, 比如存在任意长长的具体行动序列 。 与平等游戏和自动磁盘的标准对应延伸至定义得当的倒计时游戏和自动磁盘 。 但是, 与古典环境不同, 标度碎片比全部矢量计算值要弱得多, 与满足简单合成条件的自动磁体相匹配。 我们确定了一些事实, 特别是模型检查问题的可衰落性以及由我们新操作员的最大允许巢穴化所引发的等级的严格性 。