We propose an algorithm for the blind separation of single-channel audio signals. It is based on a parametric model that describes the spectral properties of the sounds of musical instruments independently of pitch. We develop a novel sparse pursuit algorithm that can match the discrete frequency spectra from the recorded signal with the continuous spectra delivered by the model. We first use this algorithm to convert an STFT spectrogram from the recording into a novel form of log-frequency spectrogram whose resolution exceeds that of the mel spectrogram. We then make use of the pitch-invariant properties of that representation in order to identify the sounds of the instruments via the same sparse pursuit method. As the model parameters which characterize the musical instruments are not known beforehand, we train a dictionary that contains them, using a modified version of Adam. Applying the algorithm on various audio samples, we find that it is capable of producing high-quality separation results when the model assumptions are satisfied and the instruments are clearly distinguishable, but combinations of instruments with similar spectral characteristics pose a conceptual difficulty. While a key feature of the model is that it explicitly models inharmonicity, its presence can also still impede performance of the sparse pursuit algorithm. In general, due to its pitch-invariance, our method is especially suitable for dealing with spectra from acoustic instruments, requiring only a minimal number of hyperparameters to be preset. Additionally, we demonstrate that the dictionary that is constructed for one recording can be applied to a different recording with similar instruments without additional training.


翻译:我们提出单通道音频信号盲目分离的算法。 它基于一个参数模型, 描述音乐仪器声音的光谱特性, 且不以音速独立。 我们开发了一个新的稀有追寻算法, 能将离散频率光谱与记录信号与模型提供的连续光谱相匹配。 我们首先使用这个算法, 将记录中的STFT光谱从记录转换成一种新型的日志频谱谱图, 其分辨率超过光谱谱图的分辨率。 然后, 我们使用该表达法的投影变异性特性, 以便通过同样稀少的追寻方法来识别乐器的声。 由于音乐仪器特征的模型参数事先不为人所知, 我们用一个修改版本的亚当来培训字典, 使用各种音频样本的算法, 我们发现它能够产生高质量的分离结果, 当模型的分辨率超过光谱谱谱谱图的分辨率, 但是具有类似光谱特征的仪器组合, 造成了概念上的困难。 模型的一个关键特征是, 它的清晰的模型是,, 它的模型是没有协调性模型,, 它的存在, 它的存在也是用来描述乐器的字典, 我们的功能的运行运行的功能, 仍然能运行运行, 。 。 。 要求一个最精确的方法,, 它的特性的特性的特性, 它的特性是,, 它的特性, 它的特性, 它的特性是, 它的特性,,, 它的特性, 它的特性, 它的特性, 它的特性是, 它的特性, 它的特性, 它的特性是, 它的特性, 的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性,,, 它的特性, 它的特性,, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性,,,,, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性,, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它的特性, 它, 它, 它, 它,, 它的特性, 它, 它, 它, 它, 它, 它,

0
下载
关闭预览

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年3月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员