Detecting piano pedalling techniques in polyphonic music remains a challenging task in music information retrieval. While other piano-related tasks, such as pitch estimation and onset detection, have seen improvement through applying deep learning methods, little work has been done to develop deep learning models to detect playing techniques. In this paper, we propose a transfer learning approach for the detection of sustain-pedal techniques, which are commonly used by pianists to enrich the sound. In the source task, a convolutional neural network (CNN) is trained for learning spectral and temporal contexts when the sustain pedal is pressed using a large dataset generated by a physical modelling virtual instrument. The CNN is designed and experimented through exploiting the knowledge of piano acoustics and physics. This can achieve an accuracy score of 0.98 in the validation results. In the target task, the knowledge learned from the synthesised data can be transferred to detect the sustain pedal in acoustic piano recordings. A concatenated feature vector using the activations of the trained convolutional layers is extracted from the recordings and classified into frame-wise pedal press or release. We demonstrate the effectiveness of our method in acoustic piano recordings of Chopin's music. From the cross-validation results, the proposed transfer learning method achieves an average F-measure of 0.89 and an overall performance of 0.84 obtained using the micro-averaged F-measure. These results outperform applying the pre-trained CNN model directly or the model with a fine-tuned last layer.


翻译:在音乐信息检索方面,检测多调音乐中的钢琴抚摸技术仍然是一项艰巨的任务。其他与钢琴有关的任务,如音速估计和发起检测等,通过应用深层学习方法,已经看到改进,但是在开发深层学习模型以探测游戏技巧方面,没有做多少工作;在本文中,我们建议为探测持续派技术而采用转移学习方法,这些技术通常由钢琴家用来丰富声音。在源头任务中,在使用物理建模虚拟仪器生成的大型数据集来压缩持续支线和时间背景时,对动态神经网络(CNN)进行了学习培训。CNN是通过利用钢琴声学和物理学知识来设计和实验的。在目标任务中,从综合数据中学到的知识可以用来检测声学录音录音录音中的持续脉冲。从录音中提取了一个配置的模型矢量带式的特性矢量,并被分类为以物理建模虚拟仪器生成的大型数据集。我们通过利用钢琴声学声学和物理物理学知识知识设计,可以直接取得0.98的准确度评分分数分数。我们用平流学方法在磁力学学学法中进行最后的成绩学学学学学学学学学学学学的成绩分析。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员