Providing efficient human mobility services and infrastructure is one of the major concerns of most mid-sized to large cities around the world. A proper understanding of the dynamics of commuting flows is, therefore, a requisite to better plan urban areas. In this context, an important task is to study hypothetical scenarios in which possible future changes are evaluated. For instance, how the increase in residential units or transportation modes in a neighborhood will change the commuting flows to or from that region? In this paper, we propose to leverage GMEL, a recently introduced graph neural network model, to evaluate changes in commuting flows taking into account different land use and infrastructure scenarios. We validate the usefulness of our methodology through real-world case studies set in two large cities in Brazil.
翻译:提供高效的人类流动服务和基础设施是全世界大多数中型大城市关注的主要问题之一。因此,正确了解通勤流量动态是更好地规划城市地区的必要条件。在这方面,一项重要任务是研究对未来可能的变化进行评估的假设情景。例如,邻里住宅单位或交通模式的增加将如何改变往返该地区的通勤流?在本文件中,我们提议利用最近引入的图形神经网络模型GMEL,以评价通勤流量的变化,同时考虑到不同的土地使用和基础设施假设情景。我们通过在巴西两个大城市进行真实世界案例研究,验证我们的方法的有用性。