The availability of commercial wearable trackers equipped with features to monitor sleep duration and quality has enabled more useful sleep health monitoring applications and analyses. However, much research has reported the challenge of long-term user retention in sleep monitoring through these modalities. Since modern Internet users own multiple mobile devices, our work explores the possibility of employing ubiquitous mobile devices and passive WiFi sensing techniques to predict sleep duration as the fundamental measure for complementing long-term sleep monitoring initiatives. In this paper, we propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user's WiFi network activity. It first employs a semi-personalized random forest model with an infinitesimal jackknife variance estimation method to classify a user's network activity behavior into sleep and awake states per minute granularity. Through a moving average technique, the system uses these state sequences to estimate the user's nocturnal sleep period and its uncertainty rate. Uncertainty quantification enables SleepMore to overcome the impact of noisy WiFi data that can yield large prediction errors. We validate SleepMore using data from a month-long user study involving 46 college students and draw comparisons with the Oura Ring wearable. Beyond the college campus, we evaluate SleepMore on non-student users of different housing profiles. Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics from the Oura ring baseline for predictions made within a 5% uncertainty rate. These errors range between 15-28 minutes for determining sleep time and 7-29 minutes for determining wake time, proving statistically significant improvements over prior work. Our in-depth analysis explains the sources of errors.
翻译:具有监测睡眠时间和质量特点的商业磨损跟踪器的可用性能能够监测睡眠时间和质量,这有利于更有用的睡眠健康监测应用和分析。然而,许多研究都报告了通过这些模式长期保持用户睡眠监测的挑战。由于现代互联网用户拥有多种移动设备,我们的工作探索了使用无处不在的移动设备和被动的WiFi传感技术来预测睡眠时间的可能性,以此作为补充长期睡眠监测举措的基本措施。在本文中,我们提议SleepMore是一种精确和容易调换的睡眠跟踪方法,它基于用户WiFi网络活动的机器学习。它首先使用半个个个个性化随机随机森林模型,使用极小的胡木薯差异估计方法将用户的网络活动分类成睡眠状态和清醒状态。通过移动平均技术,系统使用这些状态序列来估计用户的夜间睡眠睡眠时间间隔及其不确定性。这些不确定的量化使Sleep Moremoreal能够克服机器改进的功能影响,从而产生巨大的预测错误。我们用一个半个性睡眠MoremoreMore的随机随机随机随机随机森林模型来解释我们先前的用户的统计数据,在大学里比上显示我们46个固定的大学的统计序列里的数据。