5G New Radio proposes the usage of frequencies above 10 GHz to speed up LTE's existent maximum data rates. However, the effective size of 5G antennas and consequently its repercussions in the signal degradation in urban scenarios makes it a challenge to maintain stable coverage and connectivity. In order to obtain the best from both technologies, recent dual connectivity solutions have proved their capabilities to improve performance when compared with coexistent standalone 5G and 4G technologies. Reinforcement learning (RL) has shown its huge potential in wireless scenarios where parameter learning is required given the dynamic nature of such context. In this paper, we propose two reinforcement learning algorithms: a single agent RL algorithm named Clipped Double Q-Learning (CDQL) and a hierarchical Deep Q-Learning (HiDQL) to improve Multiple Radio Access Technology (multi-RAT) dual-connectivity handover. We compare our proposal with two baselines: a fixed parameter and a dynamic parameter solution. Simulation results reveal significant improvements in terms of latency with a gain of 47.6% and 26.1% for Digital-Analog beamforming (BF), 17.1% and 21.6% for Hybrid-Analog BF, and 24.7% and 39% for Analog-Analog BF when comparing the RL-schemes HiDQL and CDQL with the with the existent solutions, HiDQL presented a slower convergence time, however obtained a more optimal solution than CDQL. Additionally, we foresee the advantages of utilizing context-information as geo-location of the UEs to reduce the beam exploration sector, and thus improving further multi-RAT handover latency results.


翻译:5G新电台提议使用10千兆赫以上的频率来加速 LTE 现有最高数据率。 然而,5G 天线的有效规模及其对城市情景信号退化的影响使得维持稳定的覆盖面和连通性成为挑战。为了从这两种技术中获得最佳效果,最近的双重连通解决方案证明它们有能力提高与现有独立5G和4G技术相比的性能。强化学习(RL)显示其在无线情景中的巨大潜力,鉴于这种背景的动态性质,需要进行参数学习。我们在本文件中提议两种强化学习算法:一个名为Cllipped 双Qearing(CDQL)的单一代理RL优势以及一个等级的深QL学习(HID),以改进多无线电接入技术(多-RAT)的双连通性交接。我们的建议与两个基线比较:固定参数和动态参数解决方案。模拟结果显示在调低调度方面有了显著的改进,在数字-AQQQ(BBF)格式化环境上增加了47.6%和26.1%的增益(BBF)、17.1%,从而将R-R-R-R-RO-R-R-G-RO-R-R-L-G-G-G-I-L-G-ML-L-L-ML-L-L-L-L-L-L-L-L-L-S-L-L-L-L-L-L-L-L-S-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-L-

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员