We consider $k$-Facility Location games, where $n$ strategic agents report their locations on the real line, and a mechanism maps them to $k\ge 2$ facilities. Each agent seeks to minimize her distance to the nearest facility. We are interested in (deterministic or randomized) strategyproof mechanisms without payments that achieve a reasonable approximation ratio to the optimal social cost of the agents. To circumvent the inapproximability of $k$-Facility Location by deterministic strategyproof mechanisms, we restrict our attention to perturbation stable instances. An instance of $k$-Facility Location on the line is $\gamma$-perturbation stable (or simply, $\gamma$-stable), for some $\gamma\ge 1$, if the optimal agent clustering is not affected by moving any subset of consecutive agent locations closer to each other by a factor at most $\gamma$. We show that the optimal solution is strategyproof in $(2+\sqrt{3})$-stable instances whose optimal solution does not include any singleton clusters, and that allocating the facility to the agent next to the rightmost one in each optimal cluster (or to the unique agent, for singleton clusters) is strategyproof and $(n-2)/2$-approximate for $5$-stable instances (even if their optimal solution includes singleton clusters). On the negative side, we show that for any $k\ge 3$ and any $\delta > 0$, there is no deterministic anonymous mechanism that achieves a bounded approximation ratio and is strategyproof in $(\sqrt{2}-\delta)$-stable instances. We also prove that allocating the facility to a random agent of each optimal cluster is strategyproof and $2$-approximate in $5$-stable instances. To the best of our knowledge, this is the first time that the existence of deterministic (resp. randomized) strategyproof mechanisms with a bounded (resp. constant) approximation ratio is shown for a large and natural class of $k$-Facility Location instances.
翻译:我们考虑的是 $k$- Fability 位置游戏, 即 $ 战略代理商在真实线路上报告其位置, 机制将它们绘制成 $k\ge 2 美元设施。 每个代理商试图将距离最小化。 我们感兴趣的是( 确定性或随机化) 战略防偏激机制, 不支付合理近似率与代理商的最佳社会成本。 为了通过确定性战略机制绕过 $k$- Fabilitial 位置的不协调性, 我们的注意力限制在扭曲性稳定事件上。 美元- 成本( 美元- 美元) 功能稳定事件中, 美元- 成本( 美元- 美元) 成本( 美元- 美元) 成本( 美元) 成本( 美元- 美元) 成本( 美元- 成本( 美元- 美元) 机制。 线上的最佳解决方案并不包括 美元- 美元( 或 美元- 美元( 美元) 美元( 美元) 货币( 美元) ( 美元) 最接近于最佳的解决方案, 战略显示的是, 美元( 任何一美元) 最优化的基质( 最优化的基质( ) 的基) 战略是所有的, 每个的基质)