We study the problem of estimating functions of a large symmetric matrix $A_n$ when we only have access to a noisy estimate $\hat{A}_n=A_n+\sigma Z_n/\sqrt{n}.$ We are interested in the case that $Z_n$ is a Wigner ensemble and suggest an algorithm based on nonlinear shrinkage of the eigenvalues of $\hat{A}_n.$ As an intermediate step we explain how recovery of the spectrum of $A_n$ is possible using only the spectrum of $\hat{A}_n$. Our algorithm has important applications, for example, in solving high-dimensional noisy systems of equations or symmetric matrix denoising. Throughout our analysis we rely on tools from random matrix theory.
翻译:我们研究如何估计一个大型对称矩阵的功能($A_n$),因为我们只能得到一个响亮的估计数$\hat{A ⁇ n=A_n ⁇ sigma_n/\sqrt{n}。我们感兴趣的是,$n$是一个维格的共犯,我们建议一种基于非线性收缩美元等离子值的算法。作为中间步骤,我们解释如何只利用$A_n$的频谱才能收回美元频谱。我们的算法具有重要的应用,例如,解决高维度的方程噪音系统或对称矩阵脱色。我们在整个分析过程中,我们依靠随机矩阵理论的工具。