Large pre-trained vision models achieve impressive success in computer vision. However, fully fine-tuning large models for downstream tasks, particularly in video understanding, can be prohibitively computationally expensive. Recent studies turn their focus towards efficient image-to-video transfer learning. Nevertheless, existing efficient fine-tuning methods lack attention to training memory usage and exploration of transferring a larger model to the video domain. In this paper, we present a novel Spatial-Temporal Side Network for memory-efficient fine-tuning large image models to video understanding, named Side4Video. Specifically, we introduce a lightweight spatial-temporal side network attached to the frozen vision model, which avoids the backpropagation through the heavy pre-trained model and utilizes multi-level spatial features from the original image model. Extremely memory-efficient architecture enables our method to reduce 75% memory usage than previous adapter-based methods. In this way, we can transfer a huge ViT-E (4.4B) for video understanding tasks which is 14x larger than ViT-L (304M). Our approach achieves remarkable performance on various video datasets across unimodal and cross-modal tasks (i.e., action recognition and text-video retrieval), especially in Something-Something V1&V2 (67.3% & 74.6%), Kinetics-400 (88.6%), MSR-VTT (52.3%), MSVD (56.1%) and VATEX (68.8%). We release our code at https://github.com/HJYao00/Side4Video.
翻译:暂无翻译