To best assist human designers with different styles, Machine Learning (ML) systems need to be able to adapt to them. However, there has been relatively little prior work on how and when to best adapt an ML system to a co-designer. In this paper we present threshold designer adaptation: a novel method for adapting a creative ML model to an individual designer. We evaluate our approach with a human subject study using a co-creative rhythm game design tool. We find that designers prefer our proposed method and produce higher quality content in comparison to an existing baseline.
翻译:为了最好地帮助具有不同风格的人类设计师,机器学习系统需要能够适应这些设计师。然而,在如何和何时最好地使一个ML系统适应共同设计师方面,先前的工作相对较少。在本文件中,我们介绍了最起码的设计师的适应性:使一个创造性ML模型适应一个个体设计师的新颖方法。我们用一个共同创作节奏游戏设计工具来评估我们的方法和人类主题研究。我们发现,设计师更喜欢我们建议的方法,并且比现有的基线质量更高。