When working with multimodal Bayesian posterior distributions, Markov chain Monte Carlo (MCMC) algorithms can have difficulty moving between modes, and default variational or mode-based approximate inferences will understate posterior uncertainty. And, even if the most important modes can be found, it is difficult to evaluate their relative weights in the posterior. Here we propose an approach using parallel runs of MCMC, variational, or mode-based inference to hit as many modes or separated regions as possible and then combine these using Bayesian stacking, a scalable method for constructing a weighted average of distributions so as to minimize cross validation prediction error. The result from stacking is not necessarily equivalent, even asymptotically, to fully Bayesian inference, but it serves many of the same goals. Under misspecified models, stacking can give better predictive performance than full Bayesian inference, hence the multimodality can be considered a blessing rather than a curse. We explore theoretical consistency with an examples where the stacked inference can approximate the true data generating process from the misspecified model and a non-mixing sampler. We consider practical implementation in several model families: latent Dirichlet allocation, Gaussian process regression, hierarchical regression, horseshoe variable selection, and neural networks.


翻译:当与多式贝叶斯后送分销公司合作时,Markov连锁的Monte Carlo(MCMC)算法可能难以在模式之间移动,默认变异或基于模式的近似推论会低估后发不确定性。而且,即使能找到最重要的模式,也很难评估其相对比重。在这里,我们提出一种方法,使用平行运行的MCMC、变异或基于模式的推论来打击尽可能多的模式或分隔区域,然后使用Bayesian堆叠法来合并这些方法,这是构建一个加权分布平均值的可调整方法,以便尽可能减少交叉验证预测错误。堆叠的结果不一定等同于完全的Bayesian推论,但许多目标相同。在错误的模型下,堆叠可以提供比整个Bayes人推论更好的预测性业绩,因此,多式联运可以被视为一种祝福而不是诅咒。我们探索理论上的一致性,在其中,堆叠的推论可以将真实数据生成过程从错误的正值网络中推近,从而尽量减少交叉预测错误的预测错误的预测错误的预测错误预测错误的预测错误的预测错误的推论。

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年4月24日
专知会员服务
44+阅读 · 2020年12月18日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月6日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员