Recently, with the development of deep learning, a number of Just Noticeable Difference (JND) datasets have been built for JND modeling. However, all the existing JND datasets only label the JND points based on the level of compression distortion. Hence, JND models learned from such datasets can only be used for image/video compression. As known, JND is a major characteristic of the human visual system (HVS), which reflects the maximum visual distortion that the HVS can tolerate. Hence, a generalized JND modeling should take more kinds of distortion types into account. To benefit JND modeling, this work establishes a generalized JND dataset with a coarse-to-fine JND selection, which contains 106 source images and 1,642 JND maps, covering 25 distortion types. To this end, we proposed a coarse JND candidate selection scheme to select the distorted images from the existing Image Quality Assessment (IQA) datasets as JND candidates instead of generating JND maps ourselves. Then, a fine JND selection is carried out on the JND candidates with a crowdsourced subjective assessment.
翻译:最近,随着深层学习的发展,为JND建模建立了若干“可察觉差异”数据集。然而,所有现有的JND数据集都只根据压缩扭曲程度标出JND点。因此,从这类数据集中学习的JND模型只能用于图像/视频压缩。众所周知,JND是人类视觉系统的一个主要特征,反映了HVS所能容忍的最大视觉扭曲。因此,通用的JND模型应该更多地考虑到扭曲类型。为了让JND建模受益,这项工作建立了通用JND数据集,包含106个源图像和1 642 JND地图,涵盖25种扭曲类型。为此,我们提议了一个粗糙的JND候选人选择计划,从现有的图像质量评估(IQA)数据集中选择扭曲的图像,而不是自己生成JND地图。然后,在JND候选人中进行一个精细的JND选择,同时进行群集的主观评估。</s>