We propose a novel implicit feature refinement module for high-quality instance segmentation. Existing image/video instance segmentation methods rely on explicitly stacked convolutions to refine instance features before the final prediction. In this paper, we first give an empirical comparison of different refinement strategies,which reveals that the widely-used four consecutive convolutions are not necessary. As an alternative, weight-sharing convolution blocks provides competitive performance. When such block is iterated for infinite times, the block output will eventually convergeto an equilibrium state. Based on this observation, the implicit feature refinement (IFR) is developed by constructing an implicit function. The equilibrium state of instance features can be obtained by fixed-point iteration via a simulated infinite-depth network. Our IFR enjoys several advantages: 1) simulates an infinite-depth refinement network while only requiring parameters of single residual block; 2) produces high-level equilibrium instance features of global receptive field; 3) serves as a plug-and-play general module easily extended to most object recognition frameworks. Experiments on the COCO and YouTube-VIS benchmarks show that our IFR achieves improved performance on state-of-the-art image/video instance segmentation frameworks, while reducing the parameter burden (e.g.1% AP improvement on Mask R-CNN with only 30.0% parameters in mask head). Code is made available at https://github.com/lufanma/IFR.git


翻译:我们为高质量的实例分割提出一个新的隐含功能改进模块。 现有的图像/ 视频实例分割方法依赖于明确堆叠的图像/ 视频实例分割方法, 以在最终预测之前完善实例特征为根据。 在本文中, 我们首先对不同的精细战略进行实证比较, 这表明广泛使用的连续四个相联的组合并不必要。 作为替代办法, 权重共享的组合块可以提供竞争性性能。 当这种块块在无限的时间内循环时, 块块输出最终会达到一个均衡状态。 基于这一观察, 隐含功能的精细化( IFR) 是通过构建一个隐含功能来开发的。 通过模拟的无限深度网络, 可以通过定点迭换来获取实例特征的均衡状态特征特征。 我们的精度比较具有若干优势:(1) 模拟一个无限深度的精细化网络, 而仅需要单项残余块参数;(2) 产生全球接受场的高级平衡实例特征;(3) 成为便于大多数对象识别框架的插件和玩耍一般模块。 COCOO和YouTubeVIS基准的实验显示, 我们的内动器特征改进功能状态状态状态状态状态状态状态状态状态状态通过模拟的变异形变异性变换, 通过模拟网络参数变色参数框架, 将仅以降低版版图制版图制的校制的校制的校制的校制版图。

1
下载
关闭预览

相关内容

NeurIPS 2021丨K-Net: 迈向统一的图像分割
专知会员服务
17+阅读 · 2021年11月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Spatial Group-wise Enhance算法详解
人工智能前沿讲习班
9+阅读 · 2019年6月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Hierarchy Parsing for Image Captioning
Arxiv
6+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Spatial Group-wise Enhance算法详解
人工智能前沿讲习班
9+阅读 · 2019年6月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员