This paper presents a parallel preconditioning approach based on incomplete LU (ILU) factorizations in the framework of Domain Decomposition (DD) for general sparse linear systems. We focus on distributed memory parallel architectures, specifically, those that are equipped with graphic processing units (GPUs). In addition to block Jacobi, we present general purpose two-level ILU Schur complement-based approaches, where different strategies are presented to solve the coarse-level reduced system. These strategies are combined with modified ILU methods in the construction of the coarse-level operator, in order to effectively remove smooth errors. We leverage available GPU-based sparse matrix kernels to accelerate the setup and the solve phases of the proposed ILU preconditioner. We evaluate the efficiency of the proposed methods as a smoother for algebraic multigrid (AMG) and as a preconditioner for Krylov subspace methods, on challenging anisotropic diffusion problems and a collection of general sparse matrices.


翻译:本文提出了一种基于不完全 LU 因子分解的 DD(域分解)框架下的并行预处理方法,用于解决一般稀疏线性系统。 我们着重关注带有图形处理器 (GPU) 的分布式存储并行架构。 除块列多比方法外,我们还提出了基于 Schur 补的两级不完全 LU 预处理器方法,其中采用不同的策略来解决粗略级别的缩减系统问题。 为了有效地去除平滑误差,这些策略与修改后的 ILU 方法相结合来构建粗略级别的算子。 我们利用可用的基于 GPU 的稀疏矩阵核来加速所提出的 ILU 预处理器的设置和求解阶段。 我们评估了所提出的方法作为代数多重网格 (AMG) 平滑器以及 Krylov 子空间方法的预处理器的有效性,在具有挑战性的各向异性扩散问题和一系列一般稀疏矩阵上。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员