Many robotic applications involve interactions between multiple agents where an agent's decisions affect the behavior of other agents. Such behaviors can be captured by the equilibria of differential games which provide an expressive framework for modeling the agents' mutual influence. However, finding the equilibria of differential games is in general challenging as it involves solving a set of coupled optimal control problems. In this work, we propose to leverage the special structure of multi-agent interactions to generate interactive trajectories by simply solving a single optimal control problem, namely, the optimal control problem associated with minimizing the potential function of the differential game. Our key insight is that for a certain class of multi-agent interactions, the underlying differential game is indeed a potential differential game for which equilibria can be found by solving a single optimal control problem. We introduce such an optimal control problem and build on single-agent trajectory optimization methods to develop a computationally tractable and scalable algorithm for planning multi-agent interactive trajectories. We will demonstrate the performance of our algorithm in simulation and show that our algorithm outperforms the state-of-the-art game solvers. To further show the real-time capabilities of our algorithm, we will demonstrate the application of our proposed algorithm in a set of experiments involving interactive trajectories for two quadcopters.


翻译:许多机器人应用涉及多个代理商之间的互动,其中代理商的决定会影响其他代理商的行为。这种行为可以通过不同游戏的平衡性来捕捉。不同的游戏为模拟代理商的相互影响提供了一个清晰的框架。然而,找到不同游戏的平衡性通常具有挑战性,因为它涉及解决一系列相互配合的最佳控制问题。在这项工作中,我们提议利用多代理商互动的特殊结构来生成互动轨迹,方法是仅仅解决一个单一的最佳控制问题,即与尽量减少差异游戏潜在功能相关的最佳控制问题。我们的关键洞察力是,对于某类多代理商的互动来说,潜在的差异性游戏确实是一种潜在的差异性游戏,通过解决单一的最佳控制问题可以找到平衡性。我们引入了这样一个最佳控制问题,并借助单一代理商轨迹优化方法来开发一种可计算性可控和可缩放的算法,用于规划多代理方互动轨迹。我们将在模拟中展示我们算法的演算能力,并显示我们的算法超越了当前游戏解算器的状态。进一步展示了我们两个互动算法的演算能力,我们将在互动演算中展示我们所拟的两种演算法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员