Automated augmentation is an emerging and effective technique to search for data augmentation policies to improve generalizability of deep neural network training. Most existing work focuses on constructing a unified policy applicable to all data samples in a given dataset, without considering sample or class variations. In this paper, we propose a novel two-stage data augmentation algorithm, named Label-Aware AutoAugment (LA3), which takes advantage of the label information, and learns augmentation policies separately for samples of different labels. LA3 consists of two learning stages, where in the first stage, individual augmentation methods are evaluated and ranked for each label via Bayesian Optimization aided by a neural predictor, which allows us to identify effective augmentation techniques for each label under a low search cost. And in the second stage, a composite augmentation policy is constructed out of a selection of effective as well as complementary augmentations, which produces significant performance boost and can be easily deployed in typical model training. Extensive experiments demonstrate that LA3 achieves excellent performance matching or surpassing existing methods on CIFAR-10 and CIFAR-100, and achieves a new state-of-the-art ImageNet accuracy of 79.97% on ResNet-50 among auto-augmentation methods, while maintaining a low computational cost.


翻译:自动增强是一种新兴而有效的技术,用于搜索数据增强策略,以提高深度神经网络训练的泛化能力。大多数现有的工作都着眼于构建适用于给定数据集中所有数据样本的统一增强策略,而不考虑数据样本或类别变化。本文提出了一种新颖的两阶段数据增强算法,称为标签感知自动增强(LA3),它利用标签信息,为不同标签的样本分别学习增强策略。LA3包括两个学习阶段,在第一阶段中,通过一种神经预测器辅助的贝叶斯优化,评估并排名每个标签的单独增强方法,以便我们在低搜索成本下确定每个标签的有效增强技术。在第二阶段中,除了有效的增强技术,还构建了一种复合增强策略,从而产生显著的性能提升,并可以在典型的模型训练中轻松部署。广泛的实验表明,LA3在CIFAR-10和CIFAR-100上实现了出色的性能匹配或超越现有方法,并在自动增强方法中在ResNet-50上实现了新的ImageNet准确性纪录:79.97%,同时保持低的计算成本。

0
下载
关闭预览

相关内容

【ICML2022】MetAug:通过元特征增强的对比学习
专知会员服务
24+阅读 · 2022年5月20日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
19+阅读 · 2021年9月16日
专知会员服务
38+阅读 · 2021年6月19日
专知会员服务
60+阅读 · 2020年3月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员