High resolution and advanced semantic representation are both vital for dense prediction. Empirically, low-resolution feature maps often achieve stronger semantic representation, and high-resolution feature maps generally can better identify local features such as edges, but contains weaker semantic information. Existing state-of-the-art frameworks such as HRNet has kept low-resolution and high-resolution feature maps in parallel, and repeatedly exchange the information across different resolutions. However, we believe that the lowest-resolution feature map often contains the strongest semantic information, and it is necessary to go through more layers to merge with high-resolution feature maps, while for high-resolution feature maps, the computational cost of each convolutional layer is very large, and there is no need to go through so many layers. Therefore, we designed a U-shaped High-Resolution Network (U-HRNet), which adds more stages after the feature map with strongest semantic representation and relaxes the constraint in HRNet that all resolutions need to be calculated parallel for a newly added stage. More calculations are allocated to low-resolution feature maps, which significantly improves the overall semantic representation. U-HRNet is a substitute for the HRNet backbone and can achieve significant improvement on multiple semantic segmentation and depth prediction datasets, under the exactly same training and inference setting, with almost no increasing in the amount of calculation. Code is available at PaddleSeg: https://github.com/PaddlePaddle/PaddleSeg.


翻译:高分辨率和高级语义表示法对于密集的预测来说至关重要。 随机地、低分辨率特征地图往往能产生更强的语义表示法,而高分辨率特征地图一般可以更好地识别边缘等本地特征,但含有较弱的语义信息。 现有最先进的框架,如 HRNet, 保持了低分辨率和高分辨率特征地图平行, 并反复在不同决议之间交流信息。 然而, 我们认为, 最低分辨率特征地图往往包含最强的语义信息, 并且有必要通过更多层与高分辨率特征地图合并, 而对于高分辨率特征地图来说, 高分辨率特征地图, 高分辨率特征地图的计算成本非常高, 无需通过如此多的层次信息。 因此, 我们设计了一个U型高分辨率网络(U-HRNet), 在地貌地图之后又增加了更多的阶段, 而HRPA 地图需要与新添加的阶段同步计算。 更多的计算方法被分配到低分辨率地段地图, 大大改进了总体的语义/高分辨率表示法 。 U-HRNet 的计算法可以完全地段 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员