The class of assignment problems is a fundamental and well-studied class in the intersection of Social Choice, Computational Economics and Discrete Allocation. In a general assignment problem, a group of agents expresses preferences over a set of items, and the task is to allocate items to agents in an "optimal" way. A verification variant of this problem includes an allocation as part of the input, and the question becomes whether this allocation is "optimal". In this paper, we generalize the verification variant to the setting where each agent is equipped with multiple incomplete preference lists: Each list (called a layer) is a ranking of items in a possibly different way according to a different criterion. In particular, we introduce three multi-layer verification problems, each corresponds to an optimality notion that weakens the notion of global optimality (that is, pareto optimality in multiple layers) in a different way. Informally, the first notion requires that, for each group of agents whose size is exactly some input parameter k, the agents in the group will not be able to trade their assigned items among themselves and benefit in at least alpha layers; the second notion is similar, but it concerns all groups of size at most k rather than exactly k; the third notion strengthens these notions by requiring that groups of k agents will not be part of possibly larger groups that benefit in at least alpha layers. We study the three problems from the perspective of parameterized complexity under several natural parameterizations such as the number of layers, the number of agents, the number of items, the number of allocated items, the maximum length of a preference list, and more. We present an almost comprehensive picture of the parameterized complexity of the problems with respect to these parameters.
翻译:任务分配问题类别是社会选择、 计算经济学和分解分配交叉点中一个基本和研究周密的类别。 在一般分配问题中, 一组代理商对一组项目表示偏好, 任务在于以“ 最佳” 的方式向代理商分配项目。 这一问题的核查变量包括作为投入的一部分进行分配, 问题在于这种分配是否“ 最佳 ” 。 在本文中, 我们将核查变量推广到每个代理商都配有多个不完全的偏好列表的设置: 每个列表( 称为一个层) 都可能以不同的方式排列项目。 在不同的分配标准下, 每个列表( 称为一个层) 是一个可能以不同的方式排列项目的顺序。 特别是, 我们提出三个多层次的核查问题, 每一个都对应一个优化概念, 以不同的方式削弱全球最佳性的概念( 即多层次的精度) 。 非正式地说, 第一个概念要求, 对于每个代理商群体, 其规模是某种输入参数的参数 k, 集团的代理商将无法在它们自己之间交易它们指定的项目, 并且在最小的层次下受益; 第二个概念可能是在 k 的直观上,,, 。 要求这些代理商的阶层的阶层的阶层的排序 。 的排序将所有的组 。 。