The security of code-based cryptography usually relies on the hardness of the syndrome decoding (SD) problem for the Hamming weight. The best generic algorithms are all improvements of an old algorithm by Prange, and they are known under the name of Information Set Decoding (ISD) algorithms. This work aims to extend ISD algorithms' scope by changing the underlying weight function and alphabet size of SD. More precisely, we show how to use Wagner's algorithm in the ISD framework to solve SD for a wide range of weight functions. We also calculate the asymptotic complexities of ISD algorithms both in the classical and quantum case. We then apply our results to the Lee metric, which currently receives a significant amount of attention. By providing the parameters of SD for which decoding in the Lee weight seems to be the hardest, our study could have several applications for designing code-based cryptosystems and their security analysis, especially against quantum adversaries.
翻译:基于代码的加密安全通常取决于综合解码(SD)问题对Hamming重量的坚硬性。 最好的通用算法都是由Prange改进旧算法, 它们以信息Set 解码(ISD)算法(ISD) 的名称而著称。 这项工作的目的是通过改变SD的内在重量函数和字母大小来扩大ISD算法的范围。 更确切地说, 我们展示了如何在ISD框架中使用Wagner的算法来解决多种重量功能的SD。 我们还计算了在古典和量量子案例中ISD算法的无症状复杂性。 我们然后将我们的结果应用到目前受到极大关注的Lee 度。 通过提供SD参数, 而在Lee 重量中解码似乎最难的SD参数, 我们的研究可以有几个应用来设计基于代码的加密系统及其安全分析, 特别是针对量子对手的软件。