Semidefinite Programming (SDP) is a class of convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to make an efficient use of the current generation of quantum hardware. However, optimizing variational quantum algorithms is a challenge as it is an NP-hard problem that in general requires an exponential time to solve and can contain many far from optimal local minima. Here, we present a current term NISQ algorithm for SDP. The classical optimization program of our NISQ solver is another SDP over a smaller dimensional ansatz space. We harness the SDP based formulation of the Hamiltonian ground state problem to design a NISQ eigensolver. Unlike variational quantum eigensolvers, the classical optimization program of our eigensolver is convex, can be solved in polynomial time with the number of ansatz parameters and every local minimum is a global minimum. Further, we demonstrate the potential of our NISQ SDP solver by finding the largest eigenvalue of up to $2^{1000}$ dimensional matrices and solving graph problems related to quantum contextuality. We also discuss NISQ algorithms for rank-constrained SDPs. Our work extends the application of NISQ computers onto one of the most successful algorithmic frameworks of the past few decades.
翻译:半半量级量子算法旨在高效利用目前一代量子硬件。然而,优化变异量子算法是一项挑战,因为这是一个NP的硬性问题,一般需要指数时间来解决,并且可以包含许多离当地最理想的微量数据。在这里,我们为SDP提出一个当前术语的新谢克算法。我们的新谢克求解软件的经典优化方案是另一个小维 ansatz 空间的SDP。我们利用以汉密尔顿式地面状态问题为基础的SDP制式设计设计新谢克尔Qeigensolter。不同于变异量量量子算法,我们的egensolver的经典优化程序是共和的,一般需要指数时间来解决,并且每个本地最低值都是全球最低值。此外,我们还展示了我们新谢克解解解解新解码的微量级SDP软件解决方案的潜在潜力,通过找到最大水平的SDPQVIASQ(SQ) 和最高级的SQIQ(SQ)的S&NISQ(S&10)级模型应用,我们最高级的S&10)的Squalalalal Q(Sqalalal Q),我们最高级的SQ(SQ)的S&Q)的10)的S&Q(SQ(Oqlalalalalalalalgalalalalal) 10)的模型,也用来解决了我们10)的10)的顶级数框架。