Binarized Neural Networks (BNNs) deployed on memristive crossbar arrays provide energy-efficient solutions for edge computing but are susceptible to physical attacks due to memristor nonvolatility. Recently, Rajendran et al. (IEEE Embedded Systems Letter 2025) proposed a Physical Unclonable Function (PUF)-based scheme to secure BNNs against theft attacks. Specifically, the weight and bias matrices of the BNN layers were secured by swapping columns based on device's PUF key bits. In this paper, we demonstrate that this scheme to secure BNNs is vulnerable to PUF-key recovery attack. As a consequence of our attack, we recover the secret weight and bias matrices of the BNN. Our approach is motivated by differential cryptanalysis and reconstructs the PUF key bit-by-bit by observing the change in model accuracy, and eventually recovering the BNN model parameters. Evaluated on a BNN trained on the MNIST dataset, our attack could recover 85% of the PUF key, and recover the BNN model up to 93% classification accuracy compared to the original model's 96% accuracy. Our attack is very efficient and it takes a couple of minutes to recovery the PUF key and the model parameters.


翻译:部署在忆阻交叉阵列上的二值化神经网络(BNNs)为边缘计算提供了高能效的解决方案,但由于忆阻器的非易失性,易受物理攻击。最近,Rajendran等人(IEEE Embedded Systems Letter 2025)提出了一种基于物理不可克隆函数(PUF)的方案,以保护BNNs免受窃取攻击。具体而言,该方案通过基于设备PUF密钥位交换列来保护BNN层的权重和偏置矩阵。本文中,我们证明该保护BNN的方案易受PUF密钥恢复攻击。通过我们的攻击,我们恢复了BNN的秘密权重和偏置矩阵。我们的方法受差分密码分析的启发,通过观察模型准确率的变化逐位重构PUF密钥,最终恢复BNN模型参数。在基于MNIST数据集训练的BNN上评估,我们的攻击能够恢复85%的PUF密钥,并恢复BNN模型至93%的分类准确率(原始模型准确率为96%)。我们的攻击效率极高,仅需数分钟即可恢复PUF密钥和模型参数。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员