Underwater Image Enhancement (UIE) technology aims to tackle the challenge of restoring the degraded underwater images due to light absorption and scattering. To address problems, a novel U-Net based Reinforced Swin-Convs Transformer for the Underwater Image Enhancement method (URSCT-UIE) is proposed. Specifically, with the deficiency of U-Net based on pure convolutions, we embedded the Swin Transformer into U-Net for improving the ability to capture the global dependency. Then, given the inadequacy of the Swin Transformer capturing the local attention, the reintroduction of convolutions may capture more local attention. Thus, we provide an ingenious manner for the fusion of convolutions and the core attention mechanism to build a Reinforced Swin-Convs Transformer Block (RSCTB) for capturing more local attention, which is reinforced in the channel and the spatial attention of the Swin Transformer. Finally, the experimental results on available datasets demonstrate that the proposed URSCT-UIE achieves state-of-the-art performance compared with other methods in terms of both subjective and objective evaluations. The code will be released on GitHub after acceptance.
翻译:水下图像增强(UIE)技术旨在应对因光吸收和散射而使水下图像退化的挑战。为了解决问题,我们提议为水下图像增强方法(URSCT-UIE)建立一个新的U-Net型强化Swin-Conv变异器(URSCT-CUE),具体地说,由于基于纯变异的U-Net缺陷,我们将Swin变异器嵌入U-Net,以提高捕捉全球依赖性的能力。随后,鉴于Swin变异器不足以引起当地的关注,重新引入卷土变异器可能会引起当地更多的关注。因此,我们提供了一种巧妙的方式,将聚合变异器和核心关注机制聚合成一个强化的Swin-Conver变异器区(RSCTB),以吸引当地更多的关注,这在频道和Swin变异变器的空间上得到了加强。最后,关于现有数据集的实验结果表明,拟议的URSCT-UIE在主观和客观评价方面与其他方法相比,拟议中的URSCT-UIE都实现了状态性表现。守则将在接受之后发布。