Offline reinforcement learning (RL) aims at learning policies from previously collected static trajectory data without interacting with the real environment. Recent works provide a novel perspective by viewing offline RL as a generic sequence generation problem, adopting sequence models such as Transformer architecture to model distributions over trajectories, and repurposing beam search as a planning algorithm. However, the training datasets utilized in general offline RL tasks are quite limited and often suffer from insufficient distribution coverage, which could be harmful to training sequence generation models yet has not drawn enough attention in the previous works. In this paper, we propose a novel algorithm named Bootstrapped Transformer, which incorporates the idea of bootstrapping and leverages the learned model to self-generate more offline data to further boost the sequence model training. We conduct extensive experiments on two offline RL benchmarks and demonstrate that our model can largely remedy the existing offline RL training limitations and beat other strong baseline methods. We also analyze the generated pseudo data and the revealed characteristics may shed some light on offline RL training. The codes are available at https://seqml.github.io/bootorl.


翻译:离线强化学习(RL)旨在从先前收集的静态轨迹数据中学习政策,而没有与实际环境互动。最近的工作提供了一个新视角,将离线RL视为一个通用序列生成问题,采用诸如变换器结构等序列模型模型,以模型在轨迹上进行分布,并重新定位光束搜索作为一种规划算法。然而,一般离线RL任务使用的培训数据集非常有限,而且往往因分布覆盖面不足而受到影响,这可能有害于培训序列生成模型,但在先前的作品中尚未引起足够重视。在本文件中,我们提出了一个名为“勃起式变换器”的新式算法,其中包括了靴式的构想,并利用了学习过的模型来进一步增强自导离线数据,以进一步加强序列模型培训。我们在两个离线RL基准上进行了广泛的实验,并表明我们的模型可以在很大程度上补救现有的离线RL培训限制并击打其他强大的基线方法。我们还分析了生成的假数据以及暴露的特征可能会在离线RL培训上留下一些光。在 https://sqemmpl.giubliobio/bootorl上可以找到这些代码。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Continual Reinforcement Learning with TELLA
Arxiv
0+阅读 · 2022年8月8日
Arxiv
0+阅读 · 2022年8月8日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
17+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员