Given a directed graph, we show how to efficiently find a shortest (directed, simple) cycle on an even number of vertices. As far as we know, no polynomial-time algorithm was previously known for this problem. In fact, finding any even cycle in a directed graph in polynomial time was open for more than two decades until Robertson, Seymour, and Thomas (Ann. of Math. (2) 1999) and, independently, McCuaig (Electron. J. Combin. 2004; announced jointly at STOC 1997) gave an efficiently testable structural characterisation of even-cycle-free directed graphs. Methodologically, our algorithm relies on algebraic fingerprinting and randomized polynomial identity testing over a finite field, and uses a generating polynomial implicit in Vazirani and Yannakakis ( Discrete Appl. Math. 1989) that enumerates weighted cycle covers as a difference of a permanent and a determinant polynomial. The need to work with the permanent is where our main technical contribution occurs. We design a family of finite commutative rings of characteristic 4 that simultaneously (i) give a nondegenerate representation for the generating polynomial identity via the permanent and the determinant, (ii) support efficient permanent computations, and (iii) enable emulation of finite-field arithmetic in characteristic 2. Here our work is foreshadowed by that of Bj\"orklund and Husfeldt (SIAM J. Comput. 2019), who used a considerably less efficient ring design to obtain a polynomial-time algorithm for the shortest two disjoint paths problem. Building on work of Gilbert and Tarjan (Numer. Math. 1978) as well as Alon and Yuster (J. ACM 2013), we also show how ideas from the nested dissection technique for solving linear equation systems leads to faster algorithm designs when we have control on the separator structure of the input graph; for example, this happens when the input has bounded genus.


翻译:根据一个定向图表, 我们展示了如何在偶数的脊椎上找到最短( 方向、 简单) 的循环。 据我们所知, 之前没有为此问题而知道任何多式数学时间算法。 事实上, 在多式时间的定向图表中找到任何甚至更短( 方向、 简单) 的循环都已经持续了20多年, 直到 Robertson, Seymour和Thomas( 数学的Ann. (2) 1999) 和独立地Mccuaig (Eectron. J. Complect. 2004; STOC 1997 联合宣布) 使得平流式定向定向图表的结构化高效测试。 在方法上, 我们的算法依靠平价指纹和随机化多式的混合身份测试, 并使用Vazirani和Yannakakis( Discreteatt.) 来计算加权循环, 以长期和决定性的调值为代数; 需要与我们的主要技术贡献发生于此非技术贡献发生。 我们设计了一个固定的直径直径的直径直径直径直径直路路路路路路路路路机的直径直径直路路路段, 4,, 并同时用直径解的直径直径直径解的直径直径直路路路的直路路路路路段, 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
88+阅读 · 2021年6月29日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年10月28日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
88+阅读 · 2021年6月29日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
12+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员