We introduce a new class $\mathcal{G}$ of plane bipartite graphs and prove that each graph in $\mathcal{G}$ admits a proper square contact representation. A contact between two squares is \emph{proper} if they intersect in a line segment of positive length. The class $\mathcal{G}$ is the family of quadrangulations obtained from the 4-cycle $C_4$ by successively inserting a single vertex or a 4-cycle of vertices into a face.
翻译:我们引入了一个新的等级$\mathcal{G}$, 平面双边图表, 并证明每张图表 $\mathcal{G} 允许适当的平方接触 。 两个平方之间的接触是 \ emph{ proper}, 如果它们相交于正长度的线段。 $\ mathcal{G}$是从4周期 $C_ 4 中取取取的四轮朗的组合, 相继在脸上插入一个单一的顶端或四轮的顶端。