We report an improvement to the conventional Echo State Network (ESN), which already achieves competitive performance in one-dimensional time series prediction of dynamical systems. Our model -- a 20$\%$-dense ESN with reservoir weights derived from a fruit fly connectome (and from its bootstrapped distribution) -- yields superior performance on a chaotic time series prediction task, and furthermore alleviates the ESN's high-variance problem. We also find that an arbitrary positioning of weights can degrade ESN performance and variance; and that this can be remedied in particular by employing connectome-derived weight positions. Herein we consider four connectome features -- namely, the sparsity, positioning, distribution, and clustering of weights -- and construct corresponding model classes (A, B, B${}_2$, C) from an appropriate null model ESN; one with its reservoir layer replaced by a fruit fly connectivity matrix. After tuning relevant hyperparameters and selecting the best instance of each model class, we train and validate all models for multi-step prediction on size-variants (50, 250, 500, and 750 training input steps) of the Mackey-Glass chaotic time series; and compute their performance (Mean-Squared Error) and variance across train-validate trials.
翻译:我们报告常规回声国家网络(ESN)的改进,它已经在动态系统的一维时间序列预测中取得了竞争性的性能。我们的模型 -- -- 一个20元元元元元的ESN,其储油层重量来自水果飞飞连接(及其靴状分布),在混乱的时间序列预测任务中产生优异的性能,并进一步缓解ESN的高差异问题。我们还发现,权重的任意定位可以降低ESN的性能和差异;这特别可以通过使用连接式衍生重量位置来弥补。我们在这里考虑四个连接式特征 -- -- 即重的宽度、定位、分布和组合 -- -- 并用适当的无型ERSN(A、B、B$2元、C)来构建相应的模型级;一个由水果飞链连接矩阵取代的储油层。在调整相关的超参数和选择每个模型级的最佳实例之后,我们培训和验证所有模型,以便通过多步骤预测大小变量(50、250、500和750个培训步骤)和测算系统-G-CAS-CAS-CLA-CRisleval-时间段的性能测试。