Many optimization problems require hyperparameters, i.e., parameters that must be pre-specified in advance, such as regularization parameters and parametric regularizers in variational regularization methods for inverse problems, and dictionaries in compressed sensing. A data-driven approach to determine appropriate hyperparameter values is via a nested optimization framework known as bilevel learning. Even when it is possible to employ a gradient-based solver to the bilevel optimization problem, construction of the gradients, known as hypergradients, is computationally challenging, each one requiring both a solution of a minimization problem and a linear system solve. These systems do not change much during the iterations, which motivates us to apply recycling Krylov subspace methods, wherein information from one linear system solve is re-used to solve the next linear system. Existing recycling strategies often employ eigenvector approximations called Ritz vectors. In this work we propose a novel recycling strategy based on a new concept, Ritz generalized singular vectors, which acknowledge the bilevel setting. Additionally, while existing iterative methods primarily terminate according to the residual norm, this new concept allows us to define a new stopping criterion that directly approximates the error of the associated hypergradient. The proposed approach is validated through extensive numerical testing in the context of an inverse problem in imaging.
翻译:暂无翻译