We investigate autonomous mobile robots in the Euclidean plane. A robot has a function called target function to decide the destination from the robots' positions. Robots may have different target functions. If the robots whose target functions are chosen from a set $\Phi$ of target functions always solve a problem $\Pi$, we say that $\Phi$ is compatible with respect to $\Pi$. If $\Phi$ is compatible with respect to $\Pi$, every target function $\phi \in \Phi$ is an algorithm for $\Pi$. Even if both $\phi$ and $\phi'$ are algorithms for $\Pi$, $\{ \phi, \phi' \}$ may not be compatible with respect to $\Pi$. From the view point of compatibility, we investigate the convergence, the fault tolerant ($n,f$)-convergence (FC($f$)), the fault tolerant ($n,f$)-convergence to $f$ points (FC($f$)-PO), the fault tolerant ($n,f$)-convergence to a convex $f$-gon (FC($f$)-CP), and the gathering problems, assuming crash failures. Obtained results classify these problems into three groups: The convergence, FC(1), FC(1)-PO, and FC($f$)-CP compose the first group: Every set of target functions which always shrink the convex hull of a configuration is compatible. The second group is composed of the gathering and FC($f$)-PO for $f \geq 2$: No set of target functions which always shrink the convex hull of a configuration is compatible. The third group, FC($f$) for $f \geq 2$, is placed in between. Thus, FC(1) and FC(2), FC(1)-PO and FC(2)-PO, and FC(2) and FC(2)-PO are respectively in different groups, despite that FC(1) and FC(1)-PO are in the first group.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FC:Financial Cryptography and Data Security。 Explanation:金融密码与数据安全。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/conf/fc/
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员