Video denoising aims to recover high-quality frames from the noisy video. While most existing approaches adopt convolutional neural networks~(CNNs) to separate the noise from the original visual content, however, CNNs focus on local information and ignore the interactions between long-range regions in the frame. Furthermore, most related works directly take the output after basic spatio-temporal denoising as the final result, leading to neglect the fine-grained denoising process. In this paper, we propose a Dual-stage Spatial-Channel Transformer for coarse-to-fine video denoising, which inherits the advantages of both Transformer and CNNs. Specifically, DSCT is proposed based on a progressive dual-stage architecture, namely a coarse-level and a fine-level stage to extract dynamic features and static features, respectively. At both stages, a Spatial-Channel Encoding Module is designed to model the long-range contextual dependencies at both spatial and channel levels. Meanwhile, we design a Multi-Scale Residual Structure to preserve multiple aspects of information at different stages, which contains a Temporal Features Aggregation Module to summarize the dynamic representation. Extensive experiments on four publicly available datasets demonstrate our proposed method achieves significant improvements compared to the state-of-the-art methods.


翻译:视频脱去的目的是从噪音视频中恢复高质量框架。虽然大多数现有方法都采用进进进神经网络~(CNNs)将噪音与原始视觉内容分开,但CNN侧重于当地信息,忽视了框架中远程区域之间的相互作用;此外,大多数相关工作直接在基本spatio-时分分分分解作为最后结果后进行输出,结果忽视了细微分分解除去过程。在本文中,我们建议采用双阶段空间-气管变换器双阶段双阶段空间-气道变异器,用于相向相向相异视频分解,从而继承变异器和CNNIS的优势。具体地说,DSCT是根据一个渐进的双阶段结构,即粗不全级别和微级阶段,分别用来提取动态特征和静态特征。在这两个阶段,设计一个空间和频道两级的微分辨脱去过程,导致忽视细微的微去除过程。与此同时,我们设计一个多层次的残余结构,以保存不同阶段的多面信息,即继承变器和CN的优势。具体,具体地提议DCT基于一个渐进的两阶段结构,以渐进的两阶段结构,用以展示我们现有的数据制制制制模制制制制制制制制制制制制制制制制制制制制制制制制制制制,以制制制制制制制制制制制,以。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
47+阅读 · 2022年10月2日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员