We proposed a divergence-free and $H(div)$-conforming embedded-hybridized discontinuous Galerkin (E-HDG) method for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. In particular, the E-HDG method is computationally far more advantageous over the hybridized discontinuous Galerkin (HDG) counterpart in general. The benefit is even significant in the three-dimensional/high-order/fine mesh scenario. On a simplicial mesh, our method with a specific choice of the approximation spaces is proved to be well-posed for the linear case. Additionally, the velocity and magnetic fields are divergence-free and $H(div)$-conforming for both linear and nonlinear cases. Moreover, the results of well-posedness analysis, divergence-free property, and $H(div)$-conformity can be directly applied to the HDG version of the proposed approach. The HDG or E-HDG method for the linearized MHD equations can be incorporated into the fixed point Picard iteration to solve the nonlinear MHD equations in an iterative manner. We examine the accuracy and convergence of our E-HDG method for both linear and nonlinear cases through various numerical experiments including two- and three-dimensional problems with smooth and singular solutions. For smooth problems, the results indicate that convergence rates in the $L^2$ norm for the velocity and magnetic fields are optimal in the regime of low Reynolds number and magnetic Reynolds number. Furthermore, the divergence error is machine zero for both smooth and singular problems. Finally, we numerically demonstrated that our proposed method is pressure-robust.
翻译:暂无翻译