Leveraging algorithmic stability to derive sharp generalization bounds is a classic and powerful approach in learning theory. Since Vapnik and Chervonenkis [1974] first formalized the idea for analyzing SVMs, it has been utilized to study many fundamental learning algorithms (e.g., $k$-nearest neighbors [Rogers and Wagner, 1978], stochastic gradient method [Hardt et al., 2016], linear regression [Maurer, 2017], etc). In a recent line of great works by Feldman and Vondrak [2018, 2019] as well as Bousquet et al. [2020b], they prove a high probability generalization upper bound of order $\tilde{\mathcal{O}}(\gamma +\frac{L}{\sqrt{n}})$ for any uniformly $\gamma$-stable algorithm and $L$-bounded loss function. Although much progress was achieved in proving generalization upper bounds for stable algorithms, our knowledge of lower bounds is rather limited. In fact, there is no nontrivial lower bound known ever since the study of uniform stability [Bousquet and Elisseeff, 2002], to the best of our knowledge. In this paper we fill the gap by proving a tight generalization lower bound of order $\Omega(\gamma+\frac{L}{\sqrt{n}})$, which matches the best known upper bound up to logarithmic factors
翻译:利用算法稳定性来获得清晰的概括性界限是一种经典和强大的学习理论方法。 自从 Vapnik 和 Chervonenkis [1974年] 首次正式提出分析 SVMs 的想法以来,它们被用于研究许多基本的学习算法(例如, 美元- 近邻[Rogers和Wagner,1978年], 任何统一的 $gamma 和Wagner 的梯度算法[Hardt 等人,2016年], 线性回归[Maurer,2017年] 等。 在费尔德曼和沃德拉克[2018年、2019年] 以及布斯凯特等人(20202020年b ) 最近一连串的伟大作品中,它们证明极有可能将 $\ title developde\ mall 范围上一个高的上限化。 自我们所知道的纸质总值算值和以美元为约束的损失函数。 尽管在证明一般值的概括性上限方面取得了很大的进展, 我们对较低范围的知识是相当有限的。 事实上, 2002年的上一个不甚为已知的页的稳定性, 我们的上一个最接近的逻辑的上一个已知的顺序。