Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world applications. Yet, estimating the unknown parameters of stochastic, nonlinear dynamical models remains a challenging problem. The majority of existing methods employ maximum likelihood or Bayesian estimation. However, these methods suffer from some limitations, most notably the substantial computational time for inference coupled with limited flexibility in application. In this work, we propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator. The method consists of first training a recurrent neural network to minimize the mean-squared estimation error over a set of synthetically generated data using models drawn from the model set of interest. The a priori trained estimator can then be used directly for inference by evaluating the network with the estimation data. The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference. We experiment with two popular recurrent neural networks -- long short term memory network (LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches. We also provide a study on a real-world nonlinear benchmark problem. The experimental evaluations show that the proposed approach is asymptotically as good as the Bayes estimator.
翻译:在现代、现实世界应用中,不线性的非线性动态系统无处不在。然而,估计随机性、非线性动态模型的未知参数仍然是个挑战性的问题。大多数现有方法采用最大可能性或巴伊西亚估计。然而,这些方法有一些局限性,最明显的是计算推论的大量时间,加上应用的灵活性有限。在这项工作中,我们提议利用深海Bayayes 测算器利用深层经常性神经网络的力量来学习一个估测器。这个方法包括首次培训一个经常性神经网络,以利用从一组利益模型中提取的模型,将一组合成生成的数据的中平均差值估计错误最小化。先行培训的估测仪可以直接用来推断。深层的神经网络结构可以离线训练,并确保在推断过程中节省大量时间。我们试验了两个受欢迎的经常神经网络 -- -- 长期记忆网络(LSTM)和Gated 经常单元(GRU) -- -- 将我们提议的实验方法作为不同的基准模型进行我们所拟议的实验方法的非基准性比较。我们还展示了在不同的实验性模型上的拟议方法的可应用性地展示。