Federated learning (FL) has become a popular means for distributed learning at clients using local data samples. However, recent studies have shown that FL may experience slow learning and poor performance when client data are not independent and identically distributed (IID). This paper proposes a new federated learning algorithm, where the central server has access to a small dataset, learns from it, and fuses the knowledge into the global model through the federated learning process. This new approach, referred to as Federated learning with Server Learning or FSL, is complementary to and can be combined with other FL learning algorithms. We prove the convergence of FSL and demonstrate its benefits through analysis and simulations. We also reveal an inherent trade-off: when the current model is far from any local minimizer, server learning can significantly improve and accelerate FL. On the other hand, when the model is close to a local minimizer, server learning could potentially affect the convergence neighborhood of FL due to variances in the estimated gradient used by the server. We show via simulations that such trade-off can be tuned easily to provide significant benefits, even when the server dataset is very small.


翻译:联邦学习(FL)已成为利用当地数据样本向客户提供分散学习的流行手段,然而,最近的研究表明,当客户数据不独立和同样分布(IID)时,FL可能会经历缓慢的学习和不良的绩效。本文提出了一个新的联合学习算法,中央服务器可以进入一个小数据集,从中学习,并通过联合学习过程将知识融入全球模型。这个称为“与服务器学习或FSL学习的Freed学习”的新方法,是与其他FL学习算法的补充,可以与其他FL学习算法相结合。我们证明FSL的趋同,并通过分析和模拟来证明它的好处。我们还揭示了一个内在的权衡:当目前的模型远离任何当地的最小化器时,服务器学习可以大大改进和加速FL。另一方面,当模型接近当地最小化器时,由于服务器使用的估计梯度的差异,服务器学习可能会影响FL的趋同区。我们通过模拟表明,这种交易可以很容易调整以提供显著的好处,即使服务器数据设置非常小。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
14+阅读 · 2020年12月17日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员