Promptagator demonstrated that Large Language Models (LLMs) with few-shot prompts can be used as task-specific query generators for fine-tuning domain-specialized dense retrieval models. However, the original Promptagator approach relied on proprietary and large-scale LLMs which users may not have access to or may be prohibited from using with sensitive data. In this work, we study the impact of open-source LLMs at accessible scales ($\leq$14B parameters) as an alternative. Our results demonstrate that open-source LLMs as small as 3B parameters can serve as effective Promptagator-style query generators. We hope our work will inform practitioners with reliable alternatives for synthetic data generation and give insights to maximize fine-tuning results for domain-specific applications.
翻译:暂无翻译