Identifying academic plagiarism is a pressing problem, among others, for research institutions, publishers, and funding organizations. Detection approaches proposed so far analyze lexical, syntactical, and semantic text similarity. These approaches find copied, moderately reworded, and literally translated text. However, reliably detecting disguised plagiarism, such as strong paraphrases, sense-for-sense translations, and the reuse of non-textual content and ideas, is an open research problem. The thesis addresses this problem by proposing plagiarism detection approaches that implement a different concept: analyzing non-textual content in academic documents, specifically citations, images, and mathematical content. To validate the effectiveness of the proposed detection approaches, the thesis presents five evaluations that use real cases of academic plagiarism and exploratory searches for unknown cases. The evaluation results show that non-textual content elements contain a high degree of semantic information, are language-independent, and largely immutable to the alterations that authors typically perform to conceal plagiarism. Analyzing non-textual content complements text-based detection approaches and increases the detection effectiveness, particularly for disguised forms of academic plagiarism. To demonstrate the benefit of combining non-textual and text-based detection methods, the thesis describes the first plagiarism detection system that integrates the analysis of citation-based, image-based, math-based, and text-based document similarity. The system's user interface employs visualizations that significantly reduce the effort and time users must invest in examining content similarity.
翻译:对研究机构、出版商和供资组织来说,确定学术上的陈词滥调是一个紧迫的问题。探索迄今提出的方法分析术语、术语学和语义文字相似性。这些方法发现复制、略微改写和字字翻译文字相似性。然而,可靠地发现变相的陈词滥调,如强语句、感知感知翻译和重新使用非文字内容和思想,是一个公开的研究问题。论文通过提出采用以下不同概念的百变探测方法来解决这一问题:分析学术文件中的非文字内容,特别是引文、界面图像和数学内容。为了验证拟议检测方法的有效性,论文提出了五种评价,使用了学术上的陈词、感知翻译和对未知案例的探索性探索性研究。评价结果表明,非文字内容含有高度的文义信息,基于语言,基本上不易适应作者通常为隐瞒文体而作的改变。分析非文字化内容补充了非文字内容,具体地分析了基于视觉的图像检测方法,并大大地展示了以图像学性测试方法的模拟性检测方法,特别是模拟的检测方法。