Quantitative evaluation of human stability using foot pressure/force measurement hardware and motion capture (mocap) technology is expensive, time consuming, and restricted to the laboratory. We propose a novel image-based method to estimate three key components for stability computation: Center of Mass (CoM), Base of Support (BoS), and Center of Pressure (CoP). Furthermore, we quantitatively validate our image-based methods for computing two classic stability measures, CoMtoCoP and CoMtoBoS distances, against values generated directly from laboratory-based sensor output (ground truth) using a publicly available, multi-modality (mocap, foot pressure, two-view videos), ten-subject human motion dataset. Using Leave One Subject Out (LOSO) cross-validation, experimental results show: 1) our image-based CoM estimation method (CoMNet) consistently outperforms state-of-the-art inertial sensor-based CoM estimation techniques; 2) stability computed by our image-based method combined with insole foot pressure sensor data produces consistent, strong, and statistically significant correlation with ground truth stability measures (CoMtoCoP r = 0.79 p < 0.001, CoMtoBoS r = 0.75 p < 0.001); 3) our fully image-based estimation of stability produces consistent, positive, and statistically significant correlation on the two stability metrics (CoMtoCoP r = 0.31 p < 0.001, CoMtoBoS r = 0.22 p < 0.043). Our study provides promising quantitative evidence for the feasibility of image-based stability evaluation in natural environments.
翻译:使用脚压/力测量硬件和运动捕获(软盘)技术对人的稳定进行定量评估是昂贵的、耗时的,而且仅限于实验室。我们提出了一个基于图像的新方法,用于估算三种关键的稳定计算要素:质量中心(COM)、支持基础(BoS)和压力中心(COP)。此外,我们用基于图像的方法对两种基于实验室的传感器输出(地面真相)直接产生的值进行定量评估。 我们用基于实验室的传感器输出(地面真相)直接产生的值进行定量评估,使用公开的多种模式(软盘、脚压、双视视频)、10个主人类运动数据集。使用leave O(LOSO)交叉校验、实验结果显示:1 我们基于图像的COM估算方法(COMNet)持续地优于基于最新惯性惯性传感器的估算技术;2 用基于图像的方法与基于温度的定量传感器数据一起进行的稳定性评估,得出与地面稳定措施(COMtoo-BO=0.7、CO=COxy Stal Stal-ximational Stal Studal Stal Stal Stal Stal imisimation 2 Stal Stal Stal Stal Stal Stal ro ro ro roismism silmismismess p mess p. 2 0. 0. 0.1, 0.1, 0.7-xxxxxx 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 PM 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.BO-cisal-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 0.2) 0.2)