Nowadays, most online services are hosted on multi-stakeholder marketplaces, where consumers and producers may have different objectives. Conventional recommendation systems, however, mainly focus on maximizing consumers' satisfaction by recommending the most relevant items to each individual. This may result in unfair exposure of items, thus jeopardizing producer benefits. Additionally, they do not care whether consumers from diverse demographic groups are equally satisfied. To address these limitations, we propose a multi-objective optimization framework for fairness-aware recommendation, Multi-FR, that adaptively balances accuracy and fairness for various stakeholders with Pareto optimality guarantee. We first propose four fairness constraints on consumers and producers. In order to train the whole framework in an end-to-end way, we utilize the smooth rank and stochastic ranking policy to make these fairness criteria differentiable and friendly to back-propagation. Then, we adopt the multiple gradient descent algorithm to generate a Pareto set of solutions, from which the most appropriate one is selected by the Least Misery Strategy. The experimental results demonstrate that Multi-FR largely improves recommendation fairness on multiple stakeholders over the state-of-the-art approaches while maintaining almost the same recommendation accuracy. The training efficiency study confirms our model's ability to simultaneously optimize different fairness constraints for many stakeholders efficiently.


翻译:目前,大多数在线服务都以多利益攸关方市场为主,消费者和生产者的目标可能不同。常规建议系统主要侧重于通过向每个人推荐最相关的项目,最大限度地提高消费者的满意度。这可能导致产品受到不公平的暴露,从而损害生产者的利益。此外,它们并不关心不同人口群体的消费者是否同样满意。为了解决这些限制,我们提议了一个多目标优化框架,即多目标框架,即公平意识建议,以适应性平衡各种利益攸关方的准确性和公平性,并有Pareto最佳性保证。我们首先提出对消费者和生产者的四种公平性限制。为了以端对端方式培训整个框架,我们利用平滑的等级和随机排序政策,使这些公平标准能够不同和有利于反调。然后,我们采用多重梯度下降算法,以产生一套解决方案,最合适的解决方案由最小的错误战略从中挑选。实验结果表明,多利益攸关方在很大程度上提高了对州级和生产者的公平性建议。我们利用平整的等级和随机分级政策,同时保持了这些公平性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员