OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given a target class T of an OWL ontology, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T. To do so, we present Fuzzy OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation. An interesting feature is that the learned rules can be represented directly into Fuzzy OWL 2. As a consequence, any Fuzzy OWL 2 reasoner can then be used to automatically determine/classify (and to which degree) whether an individual belongs to the target class T.
翻译:OWL 肿瘤学现在是一种非常流行的方式,用来描述按等级、各等级和各等级案例之间的关系等分列的结构化知识。在本文中,给OWL 肿瘤学的目标级T,我们处理的是学习模糊概念包含轴心学的问题,该轴心学描述了作为T个体案例的充分条件。为了这样做,我们提出Fuzzy OWL-BOOST,它依赖于Real AdaBoost 用于(fuzzy) OWL 案例的推动算法。我们通过实验来说明其有效性。一个有趣的特征是,所学到的规则可以直接体现在 Fuzzy OWL 2. 中,因此,任何Fuzzy OWL 2 解释器可以被用来自动确定/分类(和程度)一个人是否属于目标级T。