Graph neural networks (GNNs) have shown remarkable performance on homophilic graph data while being far less impressive when handling non-homophilic graph data due to the inherent low-pass filtering property of GNNs. In general, since the real-world graphs are often a complex mixture of diverse subgraph patterns, learning a universal spectral filter on the graph from the global perspective as in most current works may still suffer from great difficulty in adapting to the variation of local patterns. On the basis of the theoretical analysis on local patterns, we rethink the existing spectral filtering methods and propose the \textbf{\underline{N}}ode-oriented spectral \textbf{\underline{F}}iltering for \textbf{\underline{G}}raph \textbf{\underline{N}}eural \textbf{\underline{N}}etwork (namely NFGNN). By estimating the node-oriented spectral filter for each node, NFGNN is provided with the capability of precise local node positioning via the generalized translated operator, thus discriminating the variations of local homophily patterns adaptively. Meanwhile, the utilization of re-parameterization brings a good trade-off between global consistency and local sensibility for learning the node-oriented spectral filters. Furthermore, we theoretically analyze the localization property of NFGNN, demonstrating that the signal after adaptive filtering is still positioned around the corresponding node. Extensive experimental results demonstrate that the proposed NFGNN achieves more favorable performance.
翻译:光学图形网络( GNNS) 在处理非光学图形数据时,由于GNNS具有内在的低空过滤特性,在同源图形数据方面表现显著,而在处理非光学图形数据时则不那么令人印象深刻。 一般来说,由于真实世界图形往往是多种子图型的复杂混合体,因此从全球角度学习图中通用光谱过滤器,因为大多数当前工程在适应本地模式变化方面可能仍然遇到很大困难。 根据对当地模式的理论分析,我们重新思考现有的光谱过滤方法,并提议通过通用翻译操作器准确定位本地偏向的光谱过滤器{NDFNBNBF@下线{NBF_Filt_Fildresserline{G ⁇ raph\ textbf=underline{Nextline{G_textbline{G}, 现实世界图案的透明光谱过滤器过滤法(NFGNFGNNNNNNDNN),因此通过通用的通用的直观定位操作操作器定位显示精确的本地定位定位能力, 从而区分了本地的直径直径分析模型的稳定性的稳定性的稳定性的稳定性的稳定性的稳定性, 的稳定性的稳定性的稳定性,从而可以同时实现了我们对本地对本地的稳定性的稳定性的稳定性的学习。