Given a real inner product space V and a group G of linear isometries, max filtering offers a rich class of G-invariant maps. In this paper, we identify nearly sharp conditions under which these maps injectively embed the orbit space V/G into Euclidean space, and when G is finite, we estimate the map's distortion of the quotient metric. We also characterize when max filtering is a positive definite kernel.
翻译:考虑到一个真正的内产空间V和一组G的线性等离子体,最大过滤提供了一大批G-变量地图。在本文中,我们确定了这些地图将空间V/G注入欧几里德空间的几乎尖锐的条件,当G是有限的时,我们估计了该地图对商数度值的扭曲。当最大过滤是一个正的确定内核时,我们也有特征。